Tier I ANALYSIS EXAM

August 2019

Try to solve all 9 problems. They each count the same amount. Justify your answers.

1. Consider the function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ given by

$$
f(x, y)= \begin{cases}\frac{x y^{2}}{x^{2}+y^{4}} & \text { if }(x, y) \neq(0,0) \\ 0 & \text { if }(x, y)=(0,0)\end{cases}
$$

(a) Show that the function f has a directional derivative in the direction of any unit vector $\mathbf{v} \in \mathbb{R}^{2}$ at the origin.
(b) Show that the function f is not continuous at the origin.
2. (a) Prove that if the infinite series
$(*) \quad \sum_{n=1}^{\infty}\left|a_{n+1}-a_{n}\right| \quad$ converges for some sequence $\left\{a_{n}\right\} \subset \mathbb{R}$,
then necessarily the sequence $\left\{a_{n}\right\}$ converges as well.
(b) Give an example of a sequence $\left\{a_{n}\right\}$ such that $(*)$ holds while the series

$$
\sum_{n=1}^{\infty} a_{n} \quad \text { diverges. }
$$

3. Let $f:[0,1] \rightarrow \mathbb{R}$ be Riemann integrable and continuous at 0 . Show that

$$
\lim _{n \rightarrow \infty} \int_{0}^{1} f\left(x^{n}\right) d x=f(0)
$$

4. Let

$$
\mathbf{F}=\cos \left(y^{2}+z^{2}\right) \mathbf{i}+\sin \left(z^{2}+x^{2}\right) \mathbf{j}+e^{x^{2}+y^{2}} \mathbf{k}
$$

be a vector field on \mathbb{R}^{3}. Calculate $\int_{S} \mathbf{F} \cdot d \mathbf{S}$, where the surface S is defined by

$$
x^{2}+y^{2}=e^{z} \cos z, 0 \leq z \leq \pi / 2, \quad \text { and oriented upward. }
$$

5. For positive integers n and m suppose $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is continuous and suppose $K \subset \mathbb{R}^{n}$ is compact. Give a proof that $f(K)$ is compact, that is, give a proof of the fact that the image of a compact set in \mathbb{R}^{n} under a continuous map is compact.
6. Suppose that $f:(0, \infty) \rightarrow(0, \infty)$ is a differentiable and positive function. Show that for any constant $a>1$, it must hold that

$$
\liminf _{x \rightarrow \infty} \frac{f^{\prime}(x)}{(f(x))^{a}} \leq 0
$$

Hint: You might consider an argument that proceeds by contradiction.
7. Prove that the following series

$$
\sum_{n=1}^{\infty} \frac{3 n^{2}+x^{4} \cos (n x)}{n^{4}+x^{2}}
$$

converges to a continuous function $f: \mathbb{R} \rightarrow \mathbb{R}$.
8. Consider the two functions

$$
F(x, y, z):=x e^{2 y}+y e^{z}-z e^{x}
$$

and

$$
G(x, y, z):=\ln (1+x+2 y+3 z)+\sin (2 x-y+z) .
$$

(a) Argue that in a neighborhood of $(0,0,0)$, the set

$$
\{(x, y, z): F(x, y, z)=0\} \cap\{(x, y, z): G(x, y, z)=0\}
$$

can be represented as a continuously differentiable curve parametrized by x.
(b) Find a vector that is tangent to this curve at the origin.
9. Let $\left\{f_{n}\right\}$ be a monotone sequence of continuous functions on $[a, b]$, that is, $f_{1}(x) \leq$ $f_{2}(x) \leq f_{3}(x) \leq \cdots$ for all $x \in[a, b]$. Suppose $\left\{f_{n}\right\}$ converges pointwise to a function f which is also continuous on $[a, b]$, as $n \rightarrow \infty$. Show that the convergence is uniform on $[a, b]$.

